. . CONV - R\ D3R - A
LA-UR -81-1550

TITLE: EVENT-ANALYSIS LANGUAGE FOR HIGH-SPEED DATA ACQUISTINN

AUTHOR(S): R. A. Hardekopf, R. V. Poore, J. W. Sunier,
M. Neiman, and A.Holm

SUBMITTED TQ: Conference on Computerized Data Acquisit@%s

Oak Ridge, TN, May 19381

— e MECLAMMPN

By ac:coptance of this articla, the publisher ecogn. 208 thaet the
LS “Sovermirent mmisins s nonsxchpve, 1oyally fioe hieney
0 publish or roproduce the publishmd foun of tus contnbu
uon, o1 W allow atlws to do so, for U S Government pae
[T L

The Lus Alaman Scntihic | ahoratiey rguests that (he g
hisher wientify thin article sy work pertormed adee e g
pmees of the US Departneny of 1 gy

3
c
A
O
N—
«©
o
G
O
>
=
N
A
O
=
o
-

LOS ALAMOS SCIENTIFIC LABORATORY

Post Office Box 1663 Los Alamos, Naw Mexico 87545
An AMmative Acton/Equal Opportunity Employer

D

Form No. 830 A3 UG A ATe UGN OF THIS SECLNND S i
81, No, 2020 HEPFANIMENT UOF YNINGY

1278 STON‘MAIL Y W 7408 gNG Ve

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

EVENT~ANALYSIS LANGUAGE FOR HIGH-SPEED DATA ACQUISITION*

Hardekopf, R. V. Poore, J. W Sunier

Los Alamos Natirnal Laboratory

Los Alamos, New Mexico

87545

M. Nciman

Lawvi ence Berkeley Laboratory

Berxeley, Ca.

94720

A. Holm

Niels Bohr Institute
Copenhagen, Denmark

ABSTRACT

We describe a multiparameter data-acquisition program that is highiy flexible and yut provides

optisum machine code for each individual set of sorting conditione.

An Event Analysis

Language (EVAL) compiler allows the user full control over the handling of events and ptoduces

code which runs &-6 tiwes faster than a generalized progrem.

We have integrated this technique

into the Los Alamos Physics Division daia acquisition system for high-speed sorting of & wide

variety of 1nput data from CAMAC or magnetic tape.

The EVAL compiler is written in FORTRAN for

MODCOMP computers, but can be easily modified for other systems.

1. INTRODUCTION

FVAL 1s an event analysis program used for data acqui-
sition and for sorting event tapes. The basic idea
exploited by EVAL 1s that sorting multiparsmeter data
coneists of many repetitions of s single sorting algor-
ithm. If a language could be defined to easily des-
cribe such slgorithme, a compiler could be written
which would pruduce optimum machine code for each in-
dividual set of sorting conditions. This allows the
user full control over the handling of the events and
produces code wnich runa much faster than s generalized
program. EVAL wae originally developed! for sorting
events f.om magnetic tape. We deacribe here ite exten-
s10n to on-line dats gcquisition

One way to consider EV.: 18 as & progras which trana-
forms the computer into a progrsmmable calculator with
a large memory Each multiparsmeter event is presented
to the calculator individually. The user must write a
progra:, in the EVAL languag.. which apecifies how
each event is to be Lreated. The calculator hse an
accumulator which can contain a nusber (eifther -nteger
or flnating point}. It cen test the value in the accu-
wulator, do arithmeric with 1t, and use 1t as & channel
number of a spectrum 1n memory to be incrementaed

While 1t can do both integer and floating point arith-
metic, integer arithmetic fe, of courae, much faster

Abosut 30 commande. with svitable arguments, are suf-
ficient to handle the manipulations required in most
types of dats acquisition. Thid includes masking and
shifting the rav events, conditional branching “ased on
gating conditiones, perforwing arithmetic or bit mani-
pulation with the events ({(ncrementing spec ra, and
writing the eventa to rape In eddition, & subtoutine
capability allows the uvser to invoke any FORTRAN or
assombly language code for wmore specialined require-
wment .

1. ZXANPLE

Before providing details on the EVAL language, it is
instructive to consider an exasmple that, although
relatively simple, tllustrates wmany of ire festures
The following is @ complate EVAL procedure that is

given the name GSORT, followed by a discussion of the
program.

In reading the progrem the following points should be
noted:

1} While a name may be any length. only the tfairst
four characters are sigm ficant.

2) The delimiters space, comma, and equals are
equivalent and may be used interchangeably to
improve readabilaty

3i C in colu:n 1 denotes a comment line. Ccomments
may flso be put on each EVAL command line by
preceding the comment with colon ().

&) The line numbers are added to aid in the dis-
cussion of the program. They are not a part
of Lhe program 1teelf.

5 The firet 2 lines (without numbers) are not
part of the EVAL program. In the command
structure? of the Los Alamos Physice
Dividion progrem “Z", the first line defines
a procedure called GBORT which exista
a8 & direcioried text file on diac The
second line loads the EVAL compiler, which then
interprets lines l-«4.

PROC GBORT
EVA
1. BRA
2. C DATA RTRUCTURF DEFINITIONS
3 FORMAT GF1 1 12 1
4 FORMAT Gr; 2 12 1
5. FORMAT TAC 3 12)
6. RPEC 81 1
7. SPEC 82 2
] BPEKC 8T1 3
9 BrrcC aAT2 L}
10. B8FEC SR] S
11 8PEC BR2 [}
12. GATE Gl 1 1 1 1
13. GATEK G2 1 1 1 2

14. GATE TRUE 1 7 1 1
15. GATE RANDOM 1 7 1 2
16. DATA EVSIZE=3

17. € START OF EXECUTABLE CODE DEFINIT1ONS
18. TAPE

19. GET X=GEl

20. INC 8l

21. GET Y=GE2

22. INC 82

23. GET TAC

24. BRA

25. IF TRU®

26. BRA

27. I* X Gl

28. INC Y ST1

29. ELSE

30. IF G2

1. INC Y 8T2

32. KET .

33. ELSE . '

34. IF RAND

35. BRA

36. JF X Gl .
37. INC Y SRl .
38. ELSE

39. IF G2

40. INC Y SR2

41. KET

42. KET

43. KET

44. C END OF EVAL Compilation

In the above example, a 3 parameter experiment is
sorted. In lines 3-5 the three parametars are given
names and declared to be in words 1, 2, and 3 of the
event. 'The ADC's produce 12 bits (4096 channels)
which are placed in bite 12 to 1 of aach word. The
least significant bit is bit 1 and the woet signifi-
cant bit is bit 16. Therefore, the declaration of
line 3 includes all 4096 :channele while line S drops
the 2 least significant bite rasulting in a 1024 chan-
nel parameter. These FORMA) declarations will be used
to compile code for masking and shifting the eveuts
wvhen they are brought into the accumulator with a GET
statement .

In lines 6-1] the 6 apectra to be sorted are declared.
Spectra 81 and 82 will be used for singles. The
others are coincidence sperira. The numbers refer to
data areas that have beer previously defined by the
ueer; the EVAL compiler gets the information that it
needo (e.g., type, length, und address) from a mewo,y
alloration file.

In lines 12-15 some gater are declared. The numbers
sefer to spectrum set, epectrum, gate set and gate
buttuns on the display button panel3, and define
variousr gates to be used for sorting. In the Los
Alamos "1" system, these gates are intensified regicas
of the spectrum dieplay and can be changed {nter-
actively. In line 16 the coustant EVSILE e set to 3,
meaning all svents are three vordo long. 1If events
are not all the seme aize, EVSIZE can be aet as a
variable,

Lines 18-42 contain the executable part of the pro-
grom, Line 18 has the TAPE commend and indicatvs that
at this point the event ia to bo placed in a tape
buffer. The buffer will automatically be written to
tape wvhen it is full. In line 19 the paremeter des-
cribed by the forwat GE) is hoth loaded into the accu-
mulator and stoved in the variable X. In liue 20 the
spectrum 8! (s incremented in the chanael contained in
the sccumulator. Thue & singles spectrum ie created.
Lines 21-12 40 a elwmilar thing for GEZ,

In lire 23 the TAC is loaded into the accumulator.
Line 24 is the first half of a BRA-KET which ends on
line 42, BRA-KETS, together with IF and ELSE are used
to control program flow. A group of statements
enclosed by a BRA-KET pair is seen as one indivisible
statement from anywhere in the prugram outside of the
BRA-KET. From inside of the BRA-KET one can only jump
to another point inside the BRA-KET. Line 25 contains
an IF statement which tests the accumulator against
the gate TRUE. 1If the accumulator contains a number
within the current setring of the TRUE gate, the IF
staterent is satisfied and the program procecds to
linre 27. If not, it jumps to the next visible ELSE or
to the end of the ZRA-KET, in this case to the ELSE on
line 33.

Lines 26-32 contain a BRA-KET which will be executed
only if the IF statement on line 25 is satisfied. On
line 27 the value X is brcught into the accumulator
and then tested against gate Gl. If in the gate, line
28 is executed which fctches Y intc the accumulator
and then increments spectrum STl. Control would then
jump to the end nf the BRA-KET (line 32). If the gate
in line 27 is not true, the program would jump to the
ELSE on line 29 and continue by executing line 30. On
line 30 the accumulator is compared to gate G2. If it
is in the gate, line 31 is executed which will bring Y
into the accumulator and increment epectium ST2;
othervise the program will jump to the end of the BRs-
KET (line J2). When the ELSE on line 33 is reached,
control will then jump to the end of that BRA-KET
(line 42) and the treatment of that event will be

te minated.

Line 34 contains an IF statement which can only be
reached in the case where the IF statement on line 25
ie not satisfied. Lines 35 4] contain a BRA-KET simi-
lar in structure to the BRA-KET in lines 26-32.

To sum up, the jllustrated sorting program has looked
at a GELI-GELI coincidence. It has produced 6 spec-
tra. Two GELI singles (lines 19-22) and 4 coincidence
spectra. There are 2 coincidence spectra of GELI-2
with gates on GELI-! for both a TRUE and RANDOM gate
on the TAC. 1In this exsmple, the TAC spectrum is not
being stored, but it would be simple to add this with
only 2 commands; e.g., &4 SPEC T command and INC T
after line 23. In practice, one would need to store
this spectrum during setup in order to set the gates,
but the INC could then be removed for faster sorting.

III. THE EVAL LANGUAGE

All EVAL statements are one line long and begin with a
predefined code word. Following the code word are
possibly sowme parameters. The notation is:

A) < >indicates one parsmeter of the type described
by the word in the - >, i.e., «NAME' means a
text name.

B) A vertical line | iw read as "or". For
exsmple, <DATA|VARIABLE: weans either data
or a variahle {s needed,

C) [) means an optional parameter. For example,
some commands that operate on the accumulatoy
alno allow & variable to be loaded into from the
accumulator within that command.

D) NUM refers to a constant, FORMAT ig the name of
a word in an event, BPEC is the name of a | or
2 dimensional epectrun and DATA referc to a
constant defined by a DATA specification
statement .,

The code words are divided into ¢ main groups and are

listed below. The allowed parameters are also indi-
cated.
1) DECLARATIONS:
DATA <NAME > <VALUE>
SPEC <NAME > <DATA AREA NUMBER>
FORMAT <RAME> <WORD>MS>BIT><LS BIT>
GATE <NAME > <68 8P GS G CS»>
VARIABLE<NAME > <VALUF.>
OPTION <NAME:> [<NAME, NAME....>]

2) DATA AND SPECTRUM MANIPULATION:

GET [<VAR>] <FORMAT>
- INC [<VAR>] <SPEC>
TINC (<VAR>] <SPEC>
LDA <NUM|DATA| SPEC| VAR>
STA < VAR|SPEC|FORMAT>
SUB < NUM| DATA | FORMAT>
ADD < NUM|DATA|FORMAT|SPEC>
MUL < NUM | DATA | FORMAT>
DIV < NUM|DATA | FORMAT>
CHS
FIX
FLOAT

INDEX (<NUM|DATA|VAR™)

3) BIT MANIPULATION:

LSH <INTEGER | DATA>
ASH <INTEGER | DATA>
OR < INTEGER | DATA | VAR | FORMAT>
AND <INTEGER | DATA | VAR | FORMAT »
XUR <INVEGER | DATA | VAR | FORMAT >

4) PROGRAM FLOW CONTROL:

BRA

KET

1F [<VAR*] <GATE|LOGICAL TEST>
ELSE

MARK

BUBL [<VAR:)

$) WRITING THE EVENTH TO TAPK:

TAPE | < FORMAT| VAR *)

The functions of the code words wvhich were not
used in the example are:

OPTION: Allows certain options to be in
effect during compile time. For
example, NOEV prevents the rormal
event counter (for dead-time cor-
rections) from being added to the
code, and SAMP creates a variable
used for sampling only part of the
data buffers.

VARIABLE: Defines an EVAL variable and gives it
an initial value,

TINC: Is the eame as INC except the channel
number in the accumulator is tested
against the size of the spectrum
bafore the epectrum channel is

irncremented.
LDA: Load the accumulator.
<
STA: Store the accumulator.

SUB,ADD,MUL,DIV: Perform those operations on
the accumulator, lczving the result
in the accumulator.

CHS: Change the sign of the accumulator.
FIX, FLCAT: Fix or float the accumulator.

INDEX: Transfer a value from the accumulalor
to the index register. The index
register is used for examining 2-
dimensional gates and for indexing
into # spectrum.

LSH: Logical shift nn &ccumulator.
ASH: Arithmetic shift on accumulator.
OR: Logical OR to the accumuiator.
AND: logical ARL to the accumulator.
XOR: Exclusive OR ro the accumulator.
MARK: Denote the beginning of an event

loop in the EVAL program. Can bn
used, for uxample, with the TAPE
ALL and OPTION SAMP commands to
trarefer the entive data duf{fer to
the tape buffer v ile histogramming
only a semple,

sunl: Name of o FORTRAN or assembly lLanguage
sutroutine to be called. Up to B uner
written subroutines ma: be used
(8umsi.....8U88),

The load acramuletor (LDA), store auvcumulator (8TA)
and ADD cor.cande also allow operationn on epectra. 1In
these canes the channel number to be loaded intuv the
accumulator, atored into from the accumulator or added
to the accumulator wuit be in the index vegiatar.

This option sllows, smong other thinge, the capability
of multiscaling.

Variables (VAR) are names of mumory locations ar. are
declared implicity by their use in statements or by
the VARIABLE statewvent, Vaiiasbles defined in an EVAL
code may be changed "on the fly" by a """ commend,
FVBIZE must be included {n each program, either as &
DATA conatant ur as & VARIABLE. It must be set equal

to the size of each event in 16 bit words. At the end
of the EVAL program the event pointer is incremented
by EVSIZE and the program is entered again at the top
if there are more events in the buffer.

The entire EVAL program must be contained in a BRA,
KET pair, i.e. the firat line of the program must be
BRA and the last line must be KET. Upon encountering
the final KET the compiler completes the code, in-
stalls it at the proper location in memory, and exits.

COMPILER DETAILS

The v compiler is a FORTRAN code that contains
assemb y-language instructions as hexadecimal op-codes
in a data statement. The normal mremonic for the op-
code {s used whenever possible. Memory is allocated
on & 256-word page basis as needed, and instructions
and locations are lgaded into this area as the com-
piler interprets EVAL commands. A global common de-
fined by the program contains the page numbers of the
code an well as spectrum and gate descriptions and
variables defined by the commands. The commands are
normally read frow ¢ directoried text fiie orn disc
vhich can be included in a user's setup procedure or
can be a stand-alone file, A macro processer
capability with arguments allows duplicating sec’ions
within the EVAL code with minimun effort.

A local symbol table keeps track nf each item name,
kind, and value as commands are encountered. The
available command mnemonice are also stored in this
table by the program. Thue if text is present in a
comnand, the program firet looks to see if an oper-
ation, epactrum, gate or variable by that name has
been previously defined. If not, and the operation is
allowed, the unknown text is assumed to be a new vari-
ahle and this is inserted in the table. Appropriate
error messages are ganerared if requirad.

The MODCOMP 15 general purpose registers are used in
the sorting code as follows:

spare
spare

index register used with 2-D gates and
the LDA, STA and ADD commanda

4 base address of the current event

3 oepare

6 firvt address of the EVAL variablen

7

8

(O o

scratch
scratch
9 ecratch
10 return addrens in calling progrem
11 lar* address of input avent buffer
12 extrs sccumulator extension
1} extra accumulator
14 accumulatoxr extension
13 sccumulator

The progrem heeps track of the accumulator etatus
(integer, real, or undefined) and the index register
atatus during the compilation. BSome cowmands can
sautomatically fix or float the accumulatov as neces-
sary for proper cperation, while othars give error
messages for an {wproper sequence.

Once the eorting progrem {s completed and the EVAL
coupiler exite, tashs are activated by appropriate "2
comsands for datea scquieftion or tape reading. Up to
8 AVAL taske can run sfmult aneously for each uaser,
each independently sorting end storing multiparameter
data by branching to the code compiled for that task.
The tasks are resumed by intertupt when the respective
input data baffere are filled. When Lhe data e

activuted, the buffers are filled by DMA transfer
using liste of CAMAC commands stored in the Differ-
ential Branch Driver® interfacez. When storing event
data on tape, the tape buffers are filled automati-
cally by the sorting tasks and written when full. The
user need not be coacerned with these details, but
needs only to construct the sorting instructions for
each event,

If a change in the sorting algorithm is required, the
user can easily make necessary changes in the EVAL
source text and execute the EVA command to ccmpile the
new version. Upon completion, the EVAL compiler auto-
watizally installs the new machine language code in
the sorting task and data acquisition can begin again.
1f frequent changes in the sorting algorithm are re-
quired, EVAL variables can be inserted in the code and
conditional branching on these variables produces
alternative paths, The value of EVAL variables can be
interrogated or changed at any time by sppropriate "2"
commands. .
The external subroutine capability is not as easy to
implement, but can be extrem2:y powerful for certain
applicationw. When the EVAL compiler encounters a
SUBn command, code is gererated to save the active
registers and brauch to the subroutine through a table
in the common area. 1f variables are to be passed as
arguments, their number and addresses are aleo
generated. The actual address for the subroutine is
put into th? common by the sorting task when it ie
loaded. In order to implement a new subroutiue, the
sorting task must be re-compiled and linked with the
custow routine. A simple job-control procedure exis:a
in the aystem for accomplishing this,

V. APPLICATIONS AND RESULTS

EVAL was jmplemented st lLos Alsmos only about 9 monthe
ago, but ie already used in many different applica-
tionp. Many of the users have converted from the
geeral wmultipareseter code MUL? 1n order to take
advant age of the increased sorting speed ard flexi-
bility offered by EVAL., For these cases, including
wultiple particle-telescopes, neutron time-of-flight,
GELI coincidence, and wire-chamber proportiounsl
counters, the sorting sperds are roughly 4-6 timen
faster, EVAL is more efficient primarily because the
sorting algorithm is "compiled" into the code rathie:
than interpreting a large data structure to get the
sorting instructions.

The IVAL flexibility has also sllowed useras to sort
their data in ways that are difficult to implement (n
a general code, and with little or no help from a
ayatems programmer. For ensmple, the executinn of
floati' g point instructions to do gain stabilization,
and conditionsl branching prior (o putting events in
the tape buffer to name anly two. This freedom in
coutrol of the input events, however, must be tempered
by user caution since they can lose all of their Jata
Uy iwproper wvent handling, Usually, auch ervrors eve
eanily cetected on compilation or checkout. The im
plementation of EVAL has aleso greatly reduced the work
load on our systems prograsmers, since most users can
now write their owm sorting progreme., This factm
alone resulte in increased productivity for the com-
puter etaff.

In addition to the MODCOMP data acquisition systems st
los Alamos, the EVAL compiler has been {mplemented o1
a Digital VAX-11/780 with some minor wodifications,
described by & paper in theee pnwcndh\p.s Another
version {e being developed at los Alemus to compile
macrocode {nstructions for a Bulk Mewory Processov’

where word lengths of 24 bits and memory up to 16
megawords will be svailable for multiparemeter
sorting.

REFERENCES

*Supported by the U.S§. Department of Energy.

1. A. Holm, "Construction of Efficient Fuclear

Event Analysis Programs Using a Simple Dedicated

Language", IEEE Transactions on Nuclear Science
N§-26, Mo, 4, 4569 (1979).

2. R. V. Poore, D. E. McMillan, R. O. Nelson and
J. W. Sunier, "Data Acquiscition System at Los
Alsmos P-9 Accelerator Facility", IEEE
Transactions og Nuclear Science, N5-26 Ro.

1, 708 (1979).

3.

g. W. Sunier, R. V. Poore, and D. E. McMillan,
A Multiparamter Data Acquisition and Display
Pr?gram“, IEEE Transactions on Nuclear
Science, N5~26, No. 4, 4485 (1979).

D, E. McMillan, R. O, Nelson, R. V. Poore,
J. W, Sunier end J. J. Ross, "A High Speed
CAMAC Differential Branch Highway Driver",
IEEE Transactions on Nuclear Science, NS-26,
No. &, 4450 (1979). -

L. G. Holzweig and R. V. Poore, "Event Analysis
Language EVAL for VAX-11/780", Proceedings of this
conference,

R.'O. Nelson, D. E. McMillan, J. W. Sunier, M.
Meier and_R: Y. Poore, "Bulk Memory Processor for
Data Acquisition”. Proceedings of this conference.

